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Abstract: This research paper delves into the investigation of trans-Sasakian
structures that accommodate a semi-symmetric non-metric connection on a mani-
fold with a Lorentzian metric. Many significant results have been derived on such
manifolds. The paper also explores conformally flat Lorentzian trans-Sasakian
manifolds that admit semi-symmetric non-metric connections. Furthermore, ex-
plicit formulas for the curvature tensor, Ricci tensor, and Ricci operator are derived
for three-dimensional Lorentzian trans-Sasakian manifolds with semi-symmetric
non-metric connections.
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1. Introduction

Let M be an odd-dimensional manifold with the Riemannian metric g. It is
well known that an almost contact metric structure (¢, £, n) (with respect to g) can
be defined on M by a tensor field ¢ of type(1,1), a vector field £ and a 1-form 7.
If M has a Sasakian structure (Kenmotsu structure), then M is called a Sasakian
manifold (Kenmotsu manifold). Sasakian manifolds and Kenmotsu manifolds have
been studied by several authors [1, 2, 12, 14, 23, 24].
In the classification of almost Hermitian manifolds by Gray and Hervella [11], there
appears a class W, of Hermitian manifolds which are closely related to locally
conformal Kaehler manifolds. An almost contact metric structure (¢,&,n,¢g) on
trans-Sasakian structure M [17] if (MzR, J,G) belongs to the class Wy, where J
is the almost complex structure on (MzR) defined by

d d
J(X, f) = (6X — x) &

(X, 0) = (6X — e n(X)0),
for all vector fields X € x (M), where x(M) is the Lie Algebra of smooth vector
field on M, f is a smooth function on (MxzR) and G is the product metric on
(MzR). This may be expressed by condition [6]

(Vx9)Y = a(g(X,Y)E —n(Y)X) + B(g(¢ X, Y)§ = n(Y)9X) (1.1)

for smooth functions o and 3 in M. Hence we say that the trans-Sasakian structure
is of type v and . In particular, it is normal and it generalizes both a-Sasakian
and [-Kenmotsu. From equation (1.1), we obtain

Vx€ = —a(¢X) — (X —n(X)E) (1.2)

(Vxn)Y = —ag(¢X,Y) + Bg(¢X, ¢Y) (1.3)

It is known that trans-Sasakian structures of type (0,0) , (0,5) and («,0) are
cosymplectic [5, 6]; f-Kenmotsu [13] and «a-Sasakian [13] respectively. Several
authors [2, 8, 14, 18, 20| have studied properties of Sasakian manifolds. [3, 7, 8,
15] have studied the structure of trans-Sasakian manifolds.

Let M be a differentiable manifold. When M has a Lorentzian metric g, that is, a
symmetric non degenerate (0,2) tensor field of index 1, then M is called a Lorentzian
manifold. Since the Lorentzian metric is of index 1, Lorentzian manifold M has
not only space-like vector fields but also time-like and light-like vector fields. This
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difference with the Riemannian case gives interesting properties on the Lorentzian
manifold. A differentiable manifold M has a Lorentzian metric if and only if M
has a 1-dimensional distribution. Hence, odd dimensional manifold is able to have
a Lorentzian metric. Therefore, it is a natural and interesting idea to define both
a trans-Sasakian structure and a Lorentzian metric on an (2n + 1)-dimensional
manifold.

2. Lorentzian Trans-Sasakian Manifold

A (2n+1)-dimensional differential manifold M is called Lorentzian trans-Sasakian
manifold if it has a (1,1) tensor field ¢, a contravariant vector field £, a covariant
vector field 7 and the Lorentzian metric g which satisfy [7],

¢’ X = X +n(X)E, (2.1)
n(§) = -1, (2.2)
9(¢X,0Y) = g(X,Y) + n(X)n(Y), (2.3)
9(X, &) = n(X), o = 0,n(¢X) =0, (2.4)
(Vx9)Y = a(g(X,Y){ —n(Y)X) + B(g9(¢X,Y)E — n(X)oX), (2.5)
for all X, Y € T(M).
Also Lorentzian Trans-Sasakian manifold M satisfies
Vxé = —a(¢X) — B(¢°X), (2.6)
(Vxn)Y = ag(¢X,Y) + Bg(6X, ¢Y), (2.7)

where V denotes the operator of covariant differentiation with respect to the
Lorentzian metric g.

If « =0 and 8 € R, the set of real numbers, then the manifold reduces to
a Lorentzian -Kenmotsu manifold studied by Yaliniz, Yildiz, and Turan [20]. If
£ =0 and o € R, then the manifold reduces to a Lorentzian a-Sasakian manifold
studied by Yildiz, Turan and Murathan [22]. If « = 0 and $ = 1, then the manifold
reduces to Lorentzian Kenmotsu manifold. Furthermore, if =1 and 8 = 0 then
manifold reduces to Lorentzian Sasakian manifolds, this property was studied by
Ikawa and Erdogan [12]. Also, Lorentzian para contact manifolds were introduced
by [17] and further studied by [1]. Different structures on Lorentzian Sasakian
manifolds are discussed by [4, 9, 10, 16, 19, 21]. Trans Lorentzian para-Sasakian
manifolds have been used by Gill and Dube [10] and Lorentzian trans-Sasakian
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manifolds have been studied by De and De [7]. It is noticed that a (2n + 1)-
dimensional Lorentzian trans-Sasakian manifold M satisfies the following relations

7).
R(X,Y)¢ = (@ + %) (n(Y)X = n(X)Y) +2aB8(n(Y)oX —n(X)¢Y)  (2.8)

+(Y@)pX — (Xa)oY + (YB)*X — (XB)4?Y,

N(R(X,Y)Z) = (o + B)(g(X, Z)n(Y) — g(Y, Z)n(X)), (2.9)
R(§Y)E = (o2 + 52 = £8)¢°Y + (208 — £a)¢Y, (2.10)
S(X,§) = 2n(a” + 5%) = €8)n(X) + (2n — 1)(XB) — (6X)a (2.11)

+1(2an(X) + Xa)
Q¢ = (2n(e® + B°) — £B)E + (2n — 1)grad — ¢(grade) (2.12)
+1(205€ 4 grada)

where R, S and () are curvature tensor, Ricci curvature and Ricci operator given
by

S(X,Y) =g(QX,Y)
and

Y= Z?ZTlﬁig(Cﬁ@i, €;)-
3. Existence of the Semi-Symmetric Non-Metric Connection on a
Lorentzian Trans-Sasakian Manifold

Definition 3.1. Let M be an (2n+1)-dimentional Lorentzian trans-Sasakian man-
ifold. Then the linear connection V defined on M as
VxY = VxY +n(Y)X, (3.1)

for all XY € x(M), is known as a semi-symmetric non-metric connection if it
satisfies the equation (1.1) and

Vxg(Y,Z) = —n(Y)9(XZ) - n(Z)g(X,Y) (3-2)

Next, we prove the existence of the semi- symmetric non -metric connection
on an (2n + 1)-dimensional Lorentzian trans-Sasakian manifold in the following
theorem.

Theorem 3.2. There exists a unique quarter-symmetric non-metric connection
defined by (3.1) on an (2n+1)-dimentional Lorentzian trans-Sasakian manifold M.
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Proof. Suppose V is the linear connection defined on an (2n + 1)— dimensional
Lorentzian trans-Sasakian manifold M and is connected with V by the relations

?XY:?XYJFH(X,Y) (33)

for all X,Y € x(M), where H denotes a tensor field of type (1, 2); using torsion
tensor, equation (3.3) leads to

T(X,Y) = H(X,Y) — H(Y, X) (3.4)

for all X|Y € x(M).
Using equation (1.1), we have

g(H(X,Y), Z) —g(H(Y, X), Z) = n(Y)g(X, Z) —n(X)g(Y,Z)  (3.5)
From equation (3.3), we have
H(X,Y)=VxY — VyY

g(H(X, Y>7Z) = g(vXY - VY, Z)

Similarly, )

Using above two equation, we have
g(H(X,Y), Z)+ g(H(X,Z),Y) = g(VxY = VxY,Z) + g(VxZ —VxZ,Y)
Using (3.1) in above, we have
H(X,Y,Z)=n(Y)y(X,Z) +n(Z)g(X,Y)
Using (3.2) in above equation, we have
Vxg(Y,Z)=-H (X,Y, Z) (3.6)

From equation (3.4) and (3.6), we can get

29(H(X,Y),Z) = g(T'(X,Y), Z2) + g(T(Z,X,)Y) +9g(T(Z,Y), X) (3.7)

Using (3.2) in (3.7), we have

20(H(X,Y),2)=g(T(X,Y),Z2)+g(T(Z,X,)Y) + g(T(Z,Y),X) (3.8)
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+21(2)g(X,Y)

As we have

9(T(X,Y),Z) = n(Y)g(X, Z) = n(X)g(Y, 2) (3.9)

Similarly, we can write

9(T(Z,X),Y) =n(X)g(ZY) = n(Z)g(X,Y)

9(T(2,Y),X) =n(Y)9(Z, X) = n(Z)g(Y. X)
Using (3.8) and (3.9), we have

29(H(X,Y), Z) = 2(Y)g(X, Z)
Contracting both side, we have
H(X,Y)=n(Y)X (3.10)
From (3.3) and (3.10), we have
VxY = VxY +n(Y)X,

for all X,Y € x(M).

Hence, the linear connection V defined on an (2n + 1)-dimensional Lorentzian
trans-Sasakian manifold is a semi-symmetric non-metric connection. The converse
part of the Theorem (3.2) is obvious. By covariant differentiation, we know that

(Vx9)Y = VxoY — ¢(VxY)
Using equation (3.1) in above, we get

(Vx@)Y = a(g(X,Y)§ = n(Y)X) + B(g(¢X,Y)§ — n(Y)9X) (3.11)

From (3.1), putting Y = £ and using (2.6), we have
V€ = —a(6X) — (B+1)X — B(X)¢ (3.12)

Taking the covariant derivative of n(X) = ¢(X, &) with respect to V along the
vector field X and Y, we get

(Vxn)Y = (Vxg)(Y, &) + g(VxY, &) + g(Y, Vx&) —n(VxY)
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Using equations (3.1) and (3.2) in above, we have
(Vxn)Y = g(Vx&Y) +n(X)n(Y)
Using equation (2.6) in above, we have
(Vxn)Y = —ag(pX,Y) — B(g(X,Y) +n(X)n(Y)) +n(X)n(Y)
Using equation (2.3) in above, we have
(Vxn)Y = —ag(¢X,Y) — Bg(¢X, oY) +n(X)n(Y) (3.13)

(Vxn)Y = —ag(¢X,Y) = Bg(X,Y) — (B — D)n(X)n(Y) (3.14)
4. Some Important Results

Theorem 4.1. In a Lorentzian trans-Sasakian manifold admitting semi-symmetric
non-metric connection, we have

R(X,Y)E = (a® + 8% +2)(n(Y)X = n(X)Y) + 2a8(n(Y)pX —n(X)eY) (4.1)
+(Ya)pX — (Xa)pY + (Y B)¢?X — (XB)¢°Y
Proof. As we know that
?X?yz = VX(?}/Z) + n(?yZ)

VxVyZ =VxVyZ +ag(¢X,Z)Y + Bg(X, 2)Y + (B — U)n(X)n(Z2)Y +
n(Vx2)Y +n(Z)(VxY) +n(VyZ)X +n(Y)n(Z2)X

Interchanging X and Y in above equation, we have

VyVxZ =VyVxZ+ag(@Y, Z)X + Bg(Y,Z)X + (B — )n(Y)n(Z)X +
n(VyZ)X +n(2)(VyX) +n(Vx2)Y +n(X)n(2)Y

Now from equation (3.1), we have
Vixy1Z =Vixy1Z +1(Z)[X,Y]
?[X,Y}Z = V[X,Y]Z + n(Z)VXY — n(Z)VYX

Let R denote the curvature tensor with respect to the semi-symmetric non-metric
connection, defined as

R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z (4.2)
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R(X,Y)Z = R(X,Y)Z + a(g(¢X, 2)Y — g(¢Y, Z)X) + B(9(X, Z2)Y —
9(Y, 2)X) + (6 = 2)n(2)(n(X)Y —n(Y)X)

Taking Z = ¢ in above equation, we have

R(X,)Y)=R(X, Y)E+2n(X)Y —n(Y)X (4.3)
Using (2.8) in (4.3), we have
R(X,Y)§ = (o + 82+ 2)(n(Y)X = n(X)Y) + 2a8(n(Y )X — n(X)Y)

+Y@)pX — (Xa)oY + (YB)¢*X — (XB)¢"Y

Lemma 4.2. In a Lorentzian trans-Sasakian manifold admitting semi-symmetric
non-metric connection, we have

N(R(X,Y)Z) = (a® + p*2)(n(X)g(Y. Z) — n(Y)g(X, Z)) (4.4)
Proof. From (4.1), we have

9(R(X,Y)E, Z) = (P +5°+2)(n(Y)g(X, Z)—n(X)g(Y, Z))+2a5(n(Y )g(¢X, Z) —
n(X)g(@Y, Z2))+ (Ya)g(oX, Z) — (Xa)g(¢Y, Z) + (Y B)g(¢* X, Z) — (X B)g(¢°Y, Z)

Interchanging ¢ and Z in above, we have (4.4).

Lemma 4.3. For a Lorentzian trans-Sasakian manifold admitting semi-symmetric
non-metric connection, we have

R(§Y)E = (o + 57 +2-E0)¢"Y + (208 + B — £a)pY (4.5)

Proof. Replace X by £ in (4.1), we get the result.

Corollary 4.4. For a Lorentzian trans-Sasakian manifold admitting semi-symmetric
non-metric connection, we have

R(&,§)€ = 0.

Theorem 4.5. In (2n+1) -dimentional Lorentzian trans-Sasakian manifolds ad-
mitting semi-symmetric non-metric connection, we have

S(X,€) =2n(a? + %+ 2)n(X) + ¥[2apn(X) + Xa] (4.6)

Q¢ = 2n(a” + 5 4 2) — £BJ¢ + ¥[2a 8¢ + gradal (4.7)
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where S is the Ricci curvature and Q) is the Ricci operator given by
S(X,Y) =g(X,Y)
and
b =X eg(oler )

Proof. Let M be an (2n + 1)-dimensional Lorentzian trans-Sasakian manifold
admitting semi-symmetric non-metric connection. Then, the Ricci tensor S of the

manifold M is defined by
S(X, Y) = 2?21“61(R(6“ X)Y, 61)
where €; = g(e;, €;),¢; = £1. From (4.1), we have

S(X,€) = Simieigl(a® + 52 + 2)(n(X)e; — n(e:) X) + 2a8(n(X)ge; — n(e)pX) +
(Xa)pe; — (e;a)pX + (X B)d%e; — (€;8)d* X, €]

S(X,€) = [2n(a” + %+ 2) = £8]n(X) + ¥ [208n(X) + Xa] — (¢X)a  (4.8)
+(2n — 1)(XP)

As, S(X)Y) = 9(QX,Y),
This implies that S(X, &) = g(QX, &)
Using the equation above in (4.8) and putting X = £ , we have

QX = [2n(a®+B%4+2)—£B)E+(2n—1)(gradB) —¢(grada) +[(2aBE+grada] (4.9)

Using (4.8) and (4.9) we can obtain (4.6) and (4.7).

Remarks. Ifin a (2n+1)-dimentional Lorentzian trans-Sasakian manifold of type
(e, B) admitting semi-symmetric non-metric connection, we consider

¢(grada) = (2n — 1)gradp,

then

€6 = (€, gradp) = 5 (&, dlgrada)) = - ——n(grado) = 0

2n 2n—1

and

XpB=g(X,gradp) = 9(X, ¢(grada)) = 9(¢X, (grada))

2n —1 2n—1
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1
=5 —(9X)a

and hence using above condition in (4.8) and (4.9), we get (4.6) and (4.7).

Corollary 4.6. For a Lorentzian trans-Sasakian manifold admitting semi- sym-
metric non-metric connection, we have

S(&,€) = ¢(ba—2a8) — 2(* + B* + 2)

5. Conformally Flat Lorentzian Trans-Sasakian Manifolds admitting
Semi-Symmetric Non-Metric Connection

In this section, we consider conformally flat Lorentzian trans-Sasakian manifold
M?* (¢, €,m,g), (n > 1) admitting semi-symmetric non-metric connection V. The
conformal curvature tensor C' [7] is given by

C(X,Y)Z = R(X,Y)Z — ﬁ[g(x 2)X — S(X, 2)Y + (Y, 2)0X (5.1
—9(X, 2)QY] + Wr_l)[g(x 2)X — g(X, 2)Y).

where r is the scalar curvature of M. For a conformally flat manifold, we have

C(X,Y)Z =0 for n > 1 and hence from (5.1), we obtain

R(X,Y)Z = ﬁ[é(x )X —8(X,2)Y +9(Y,2)QX — g(X, 2)QY] (5.2)
om0 DX — g(X. DY,
Replacing U by £ in above equation, we get
n(R(X,Y)Z) = ﬁ[S(Ya Z)n(X) = S(X, Z)n(Y) +g(Y. 2)S(X.€)  (5.3)
~9(X, 2)S(Y,)] = 55— 0¥ 2)n(X) = (X, Zpn(Y)],

Replacing Y by £ in above, we have
S(X,2) = (2n — Dn(R(X,€)Z) + (X, Z2)S(£,€) — n(X)S(&, 2) (5.4)

—n(2)S(X,€) + 3-n(Z)n(X) +g(X, 2)].
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Now, from equation (4.4), we have
N(R(X,8)Z) = (® + 5 + a)[g(X, Z) + n(X)n(Z)] (5.5)

Using equation (4.6), (5.4) and corollary 4.6 in equation (5.3) then we obtain

S(X,7) = [% ~ (0 + B2+ 2) + Y(na — 2a8)|g(X, Z) + [% —@2n+1) (5.6)

(o + 8%+ 2) — dapY|n(Z) — [n(X)(Za) +n(Z)(Xa)].
This provides the following results.

Theorem 5.1. A conformally flat Lorentzian Trans-Sasakian manifold admitting
semi-symmetric non-metric connection M*" (¢, €, n,9), (n > 1) is an n— Einstein
manifold, provided 1) = trace¢ =0 and ¢(grada) = (2n — 1)gradp.

6. Three - Dimentional Lorentzian Trans - Sasakian Manifolds admitting
Semi -Symmetric Non-Metric Connection

Since the conformal curvature tensor vanishes in a three-dimensional Rieman-
nian manifold, therefore from (5.2), we have

R(X,Y,Z)=g(Y,2)QX — g(X,Z)QY + S(Y,Z)X — S(X,2)Y (6.1)
59V 2)X — g(X. 2)Y],

where @ is the Ricci operator, i.e., g(QX,Y) = S(X,Y) and r is the scalar curva-
ture of the manifold.

Using the equation (4.8) and (4.9) in a three-dimentional Lorentzian trans - Sasakian
manifold admitting semi-symmetric non-metric connection, we have

S(X,€) = [2(” + 7+ 2) = EB)n(X) + V[2a8n(X) + Xa] — ($X)a + (XB) (6.2)

Q¢ = [2(a® + B% 4 2) — £P]E + gradf — ¢(grada) + Y[208¢ + grada] — (6.3)

We deduce an expression for Ricci operator in a three-dimensional Lorentzian trans-
Sasakian manifold admitting semi-symmetric non-metric connection in the follow-
ing results.

Theorem 6.1. In a 3-dimentional Lorentzian trans-Sasakian manifold admitting
semi-symmetric non-metric connection Ricci operator is given by

QX = [g +E68—(a®+ B2+ 2) + (o —2ap)| X + [g +£8—3(a*+ % +2a) (6.4)
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—4afn(X)E — [gradB — ¢(grada) + ¢ (grada)|n(X) — [XB — (¢X)a
+i(Xa)l + [2a8 — EalpX

Proof. For a three-dimentional Lorentzian trans-Sasakian manifold admitting
semi-symmetric non-metric connection, from (6.1), we have

R(X,Y)¢ =n(Y)QX = n(X)QY + S(Y, )X — S(X,O)Y = S[n(¥)X —n(X)Y]
Using equation (6.2) in above equation, we obtain
R(X,Y)E =n(Y)QX —n(X)QY — [g+5ﬁ—2(a2+52+2)—20¢5¢] (n(Y) X =n(X)Y)

HY )y = (oY) + (YH)IX — [(Xa)y — (¢X)a + (XB)]Y.
In view of (4.1), substituting ¥ = ¢ and using (6.3), we have (6.4).

Corollary 6.2. For a Lorentzian Sasakian manifold with a semi-symmetric non-
metric connection, the Ricci operator is given by

QX = [5—(a®+2)+ Y(Ea)|X +[5 = 3(a”+2)n(X)E+ [B(grada) — ¥ grada)]n(X)

+H(@X)a — (Xa)pl§ — (§a)pX.

Corollary 6.3. For a Lorentzian Kenmotsu manifold with a semi-symmetric non-
metric connection, the Ricci operator is given by

QX = [568 = (B + 21X + [5 + 68 = 3(8 +2)n(X)€ ~ (gradB)n(X) — (XB)E.

Corollary 6.4. For a Lorentzian cosymplectic manifold with a semi-symmetric
non-metric connection, the Ricci operator is given by

QX = (5 =X + (5~ 6)(X)&.

Corollary 6.5. In a three-dimensional Lorentzian trans-Sasakian manifold ad-
mitting semi-symmetric non-metric connection, the curvature tensor R and Ricci
tensor S are given by

S(LY) =[5 +€8— (a2 + B2 +2) + Y6 —20B)|g(X.Y) + [5 + €8 (6.5)

=3(a” + 5% +2) — 4aYln(X)n(Y) — n(X)[Y B — (¢Y ) + (V)]
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—n(YV)[XB — (6X)a +¥(Xa)] + [(2a + 1) — £alg(6X,Y)
R(X,Y.Z) = [5+258 = 2(a* + 8 + 2) + 2§ — 208)][g(Y. )X (6.6)

~9(X. 2)Y] + g(Y. 2)[(5 + 8 3(e + B + 2) — 4aBu)n(X)E + n(X)
(¢(grada) — P(grada) — gradB) — (X — (¢ X)a + (X a))¢] + 9(X, Z)
(5 +€8=3(a> + 62 +2) = 4aBe)n(Y ) + n(Y) ($(grada) — ¥(grada)

—gradB) = (V8 = (6 )+ 0(Y )] + [(5 + £8 = 3(a” + 5 + 2) — daBy)
1Y n(Z)] +n(Y)(9Z)a —p(Za) = Z8) = n(Z)(Y B = (6Y )a + v(Ya)))X
—[(5 + €8 = 3(e> + B2+ 2) — 4aB)n(X)n(Z) + n(X)(62)a - ¥(Za) - Z5)
“0(Z)(XB ~ (9X)a +H(Xa))Y +[20)8 ~ allg(6Y. 2)X — g(¢X, Z)Y]

Proof. Taking the metric of equation (6.4) with respect to Y, we obtain equation
(6.5). Then, again using equations (6.1), (6.4), and (6.5), we get (6.6).
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